skip to main content


Search for: All records

Creators/Authors contains: "Bristow, Laura A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Raina, Jean-Baptiste (Ed.)
    ABSTRACT Nutrient availability can significantly influence microbial genomic and proteomic streamlining, for example, by selecting for lower nitrogen to carbon ratios. Oligotrophic open ocean microbes have streamlined genomic nitrogen requirements relative to those of their counterparts in nutrient-rich coastal waters. However, steep gradients in nutrient availability occur at meter-level, and even micron-level, spatial scales. It is unclear whether such gradients also structure genomic and proteomic stoichiometry. Focusing on the eastern tropical North Pacific oxygen minimum zone (OMZ), we use comparative metagenomics to examine how nitrogen availability shapes microbial and viral genome properties along the vertical gradient across the OMZ and between two size fractions, distinguishing free-living microbes versus particle-associated microbes. We find a substantial increase in the nitrogen content of encoded proteins in particle-associated over free-living bacteria and archaea across nitrogen availability regimes over depth. Within each size fraction, we find that bacterial and viral genomic nitrogen tends to increase with increasing nitrate concentrations with depth. In contrast to cellular genes, the nitrogen content of virus proteins does not differ between size fractions. We identified arginine as a key amino acid in the modulation of the C:N ratios of core genes for bacteria, archaea, and viruses. Functional analysis reveals that particle-associated bacterial metagenomes are enriched for genes that are involved in arginine metabolism and organic nitrogen compound catabolism. Our results are consistent with nitrogen streamlining in both cellular and viral genomes on spatial scales of meters to microns. These effects are similar in magnitude to those previously reported across scales of thousands of kilometers. IMPORTANCE The genomes of marine microbes can be shaped by nutrient cycles, with ocean-scale gradients in nitrogen availability being known to influence microbial amino acid usage. It is unclear, however, how genomic properties are shaped by nutrient changes over much smaller spatial scales, for example, along the vertical transition into oxygen minimum zones (OMZs) or from the exterior to the interior of detrital particles. Here, we measure protein nitrogen usage by marine bacteria, archaea, and viruses by using metagenomes from the nitracline of the eastern tropical North Pacific OMZ, including both particle-associated and nonassociated biomass. Our results show higher genomic and proteomic nitrogen content in particle-associated microbes and at depths with higher nitrogen availability for cellular and viral genomes. This discovery suggests that stoichiometry influences microbial and viral evolution across multiple scales, including the micrometer to millimeter scale associated with particle-associated versus free-living lifestyles. 
    more » « less
    Free, publicly-accessible full text available April 27, 2024
  2. null (Ed.)
    Nitrous oxide (N 2 O) is a potent greenhouse gas and an ozone destroying substance. Yet, clear step-by-step protocols to measure N 2 O transformation rates in freshwater and marine environments are still lacking, challenging inter-comparability efforts. Here we present detailed protocols currently used by leading experts in the field to measure water-column N 2 O production and consumption rates in both marine and other aquatic environments. We present example 15 N-tracer incubation experiments in marine environments as well as templates to calculate both N 2 O production and consumption rates. We discuss important considerations and recommendations regarding (1) precautions to prevent oxygen (O 2 ) contamination during low-oxygen and anoxic incubations, (2) preferred bottles and stoppers, (3) procedures for 15 N-tracer addition, and (4) the choice of a fixative. We finally discuss data reporting and archiving. We expect these protocols will make 15 N-labeled N 2 O transformation rate measurements more accessible to the wider community and facilitate future inter-comparison between different laboratories. 
    more » « less
  3. Summary

    Cross‐feeding of metabolites between coexisting cells leads to complex and interconnected elemental cycling and microbial interactions. These relationships influence overall community function and can be altered by changes in substrate availability. Here, we used isotopic rate measurements and metagenomic sequencing to study how cross‐feeding relationships changed in response to stepwise increases of sulfide concentrations in a membrane‐aerated biofilm reactor that was fed with methane and ammonium. Results showed that sulfide: (i) decreased nitrite oxidation rates but increased ammonia oxidation rates; (ii) changed the denitrifying community and increased nitrous oxide production; and (iii) induced dissimilatory nitrite reduction to ammonium (DNRA). We infer that inhibition of nitrite oxidation resulted in higher nitrite availability for DNRA, anammox, and nitrite‐dependent anaerobic methane oxidation. In other words, sulfide likely disrupted microbial cross‐feeding between AOB and NOB and induced cross‐feeding between AOB and nitrite reducing organisms. Furthermore, these cross‐feeding relationships were spatially distributed between biofilm and planktonic phases of the reactor. These results indicate that using sulfide as an electron donor will promote N2O and ammonium production, which is generally not desirable in engineered systems.

     
    more » « less
  4. Abstract

    Anaerobic ammonium oxidation (anammox) contributes substantially to ocean nitrogen loss, particularly in anoxic marine zones (AMZs). Ammonium is scarce in AMZs, raising the hypothesis that organic nitrogen compounds may be ammonium sources for anammox. Biochemical measurements suggest that the organic compounds urea and cyanate can support anammox in AMZs. However, it is unclear if anammox bacteria degrade these compounds to ammonium themselves, or rely on other organisms for this process. Genes for urea degradation have not been found in anammox bacteria, and genomic evidence for cyanate use for anammox is limited to a cyanase gene recovered from the sediment bacterium Candidatus Scalindua profunda. Here, analysis of Ca. Scalindua single amplified genomes from the Eastern Tropical North Pacific AMZ revealed genes for urea degradation and transport, as well as for cyanate degradation. Urease and cyanase genes were transcribed, along with anammox genes, in the AMZ core where anammox rates peaked. Homologs of these genes were also detected in meta-omic datasets from major AMZs in the Eastern Tropical South Pacific and Arabian Sea. These results suggest that anammox bacteria from different ocean regions can directly access organic nitrogen substrates. Future studies should assess if and under what environmental conditions these substrates contribute to the ammonium budget for anammox.

     
    more » « less
  5. Abstract

    We investigated methane oxidation in the oxygen minimum zone (OMZ) of the eastern tropical North Pacific (ETNP) off central Mexico. Methane concentrations in the anoxic core of the OMZ reached ~ 20 nmol L−1at off shelf sites and 34 nmol L−1at a shelf site. Rates of methane oxidation were determined in ship‐board incubations with3H‐labeled methane at O2concentrations 0–75 nmol L−1. In vertical profiles at off‐shelf stations, highest rates were found between the secondary nitrite maximum at ~ 130 m and the methane maximum at 300–400 m in the anoxic core. Methane oxidation was inhibited by addition of 1μmol L−1oxygen, which, together with the depth distribution, indicated an anaerobic pathway. A coupling to nitrite reduction was further indicated by the inhibitory effect of the nitric oxide scavenger 2‐phenyl‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (PTIO). Metatranscriptomes from the anoxic OMZ core supported the likely involvement of nitrite‐reducing bacteria of the NC10 clade in anaerobic methane oxidation, but also indicated a potential role for nitrate‐reducing euryarchaeotal methane oxidizers (ANME‐2d). Gammaproteobacteria of the Methanococcales were further detected in both 16S rRNA gene amplicons and metatranscriptomes, but the role of these presumed obligately aerobic methane oxidizers in the anoxic OMZ core is unclear. Given available estimates of water residence time, the measured rates and rate constants (up to ~ 1 yr−1) imply that anaerobic methane oxidation is a substantial methane sink in the ETNP OMZ and hence attenuates the emission of methane from this and possibly other OMZs.

     
    more » « less